skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petrović, Sonja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We construct Bayesian and frequentist finite-sample goodness-of-fit tests for three different variants of the stochastic blockmodel for network data. Since all of the stochastic blockmodel variants are log-linear in form when block assignments are known, the tests for the latent block model versions combine a block membership estimator with the algebraic statistics machinery for testing goodness-of-fit in log-linear models. We describe Markov bases and marginal polytopes of the variants of the stochastic blockmodel and discuss how both facilitate the development of goodness-of-fit tests and understanding of model behaviour. The general testing methodology developed here extends to any finite mixture of log-linear models on discrete data, and as such is the first application of the algebraic statistics machinery for latent-variable models. 
    more » « less
  2. Abstract Exponential random graph models, or ERGMs, are a flexible and general class of models for modeling dependent data. While the early literature has shown them to be powerful in capturing many network features of interest, recent work highlights difficulties related to the models’ ill behavior, such as most of the probability mass being concentrated on a very small subset of the parameter space. This behavior limits both the applicability of an ERGM as a model for real data and inference and parameter estimation via the usual Markov chain Monte Carlo algorithms. To address this problem, we propose a new exponential family of models for random graphs that build on the standard ERGM framework. Specifically, we solve the problem of computational intractability and “degenerate” model behavior by an interpretable support restriction. We introduce a new parameter based on the graph-theoretic notion of degeneracy, a measure of sparsity whose value is commonly low in real-world networks. The new model family is supported on the sample space of graphs with bounded degeneracy and is called degeneracy-restricted ERGMs, or DERGMs for short. Since DERGMs generalize ERGMs—the latter is obtained from the former by setting the degeneracy parameter to be maximal—they inherit good theoretical properties, while at the same time place their mass more uniformly over realistic graphs. The support restriction allows the use of new (and fast) Monte Carlo methods for inference, thus making the models scalable and computationally tractable. We study various theoretical properties of DERGMs and illustrate how the support restriction improves the model behavior. We also present a fast Monte Carlo algorithm for parameter estimation that avoids many issues faced by Markov Chain Monte Carlo algorithms used for inference in ERGMs. 
    more » « less
  3. Algebraic statistics uses tools from algebra (especially from multilinear algebra, commutative algebra, and computational algebra), geometry, and combinatorics to provide insight into knotty problems in mathematical statistics. In this review, we illustrate this on three problems related to networks: network models for relational data, causal structure discovery, and phylogenetics. For each problem, we give an overview of recent results in algebraic statistics, with emphasis on the statistical achievements made possible by these tools and their practical relevance for applications to other scientific disciplines. 
    more » « less